EXTERNAL

ADQCC – EMIRATES METROLOGY INSTITUTE (EMI)

Measurement of Local Gravity for Force, Torque and Pressure Standards -

Good enough for the requirements expected in 2050?

Ray Jenkins

T&M 2014 Conference, 29 September 2014 Misty Hills Conference Hotel, Muldersdrift, RSA

EMI laboratories are located in the CERT Health Science Building

Force:
$$F = m \times g \times \left(1 - \frac{\rho_a}{\rho_m}\right)$$

Torque: $T = F \times d$

Pressure:
$$P = \frac{F + (D \times \tau)}{A} + P_{ref}$$

and

$$A = A_0 \times \left[1 + (t - t_0) \times \left(\alpha_{pist} + \alpha_{cyl}\right)\right] \times \left[1 + \lambda \times \left(P - P_{ref}\right)\right]$$

1000 N·m Torque Standard Machine

(AD)

7 MPa Gas Pressure Standard

(1) $g = 9.780\ 327 \times (1 + 0.005\ 3024\ sin^2\emptyset - 0.000\ 0058\ sin^22\emptyset)$ $-3.088 \times 10^{-6} \times H\ m/s^2$

Calculation nearly always gives results within $1 \times 10^{-3} \text{ m/s}^2$

(2) PTB website: www.ptb.de/cartoweb3/SISproject.php

For 8 out of 10 UAE reference locations, the difference between the known reference value and the calculated value was greater than the uncertainty given for the calculation, but results better than $5 \times 10^{-4} \text{ m/s}^2$

Neither method gives sufficiently low uncertainty

Measurement of Local Gravity - g

- Use of commercially-available absolute gravity meter considered, but cost prohibitive and none available for hire in UAE. Also difficult to use
- Two CG-5 gravity meters capable of gravity comparison measurements provided by the Abu Dhabi Petroleum Institute (PI) under contract to EMI
- Gravity meters have excellent performance and inbuilt compensation for important effects:
 - Resolution of 1μ Gal ($10^{-9} g$)
 - Repeatability better than 5 µGal
 - Wide operating temperature range up to 55 °C external temperature
 - In-built temperature compensation with resolution of 0.01 mK
 - In-built X & Y tilt compensation with resolution of 0.1 arcsecond
 - In-built GPS to provide location and time of measurement, giving option of automatic correction for Earth tides

Portable Gravity Comparison Meter

Two CG-5 gravity meters provided by the Abu Dhabi Petroleum Institute

Measurement Protocol

(Ref) (Abs) (EMI1) (EMI2) (Ref)

Above measurement cycle of five stations was repeated over three consecutive days, using the same *Ref* location at the Petroleum Institute, but a different *Abs* station each day

Abs Station	Location	g	Uncertainty
			(k=1)
		mGal	mGal
1	Nazwa	978 846.767	0.004
2	Hatta	978 881.266	0.005
3	Al Ain	978 768.517	0.006

Measurement Locations

Nazwa

EMI2

Performance of the Gravity Meters over a Measurement Period of 42 min 40 s

Worst Case

Best Case

RMS of all the Standard Errors is 2.8 µGal and 1.2 µGal for Gravity Meters A and B, respectively

Drift of Gravity Meter A

Standard error for the fit is 0.034 mGal All results corrected for the drift of the gravity meters

Average results obtained at the EMI locations

Location	Meter	Nazwa	Hatta	Al Ain	
		Measured value of g / mGal			
EMI1	Α	978 888.047	978 888.077	978 888.099	
	В	978 888.049	978 888.091	978 888.123	
EMI2	А	978 888.067	978 888.097	978 888.120	
	В	978 888.069	978 888.111	978 888.143	

Measurement results at floor level at the two EMI locations

Estimated uncertainty (k=2) for all values is 0.16 mGal

Average results at the working levels at EMI

Location	Value of g	Uncertainty (k=2)	
	m/s ²	m/s ²	relative
<i>EMI1</i> (Pressure Laboratory) 1.115 m	9.788 877 3	0.000 002 0	2.0 x 10 ⁻⁷
<i>EMI2</i> (Torque Laboratory) 0.450 m	9.788 879 6	0.000 002 0	2.0 x 10 ⁻⁷

Uncertainty increased because average value used for all weights in the stacks

Measurement Uncertainty

Uncertainty Contributor	Contribution (k=1)	Note
	µGal	
Resolution	0.3	Insignificant
Short-term repeatability	2.0	Small - based on 10 measurements
Drift over 3 days	34.0	Significant Type A contribution
Scale error	1.0 - 72.0	Significant - from 3 absolute stations
Value at <i>Abs</i> station	4.0 - 6.0	Small
Location (X and Y)	2.0	Small - well controlled
Elevation at measurement (Z)	1.7 -8.7	Small - well controlled
Tilt	3.0	Small
Earth tide	61.2	No correction for Earth tide applied
Air pressure	2.9	Small
Water level	8.2	Small
Polar motion	2.4	Small
Elevation at working location	54.6	Average taken for all weights in stack
Inter-mass gravity force	7.0	Small

Calculation of Air Density

• CIPM-2007 method gives best calculation for air density -Metrologia, 45 (2008), pages 149 to 155 doi 10.1088/0026-1394/45/2/004

• Annex E.3 of OIML R 111-1, 2014(E) gives easier to use method:

$$\rho_a = \frac{0.34848 \times P - 0.009 \times RH \times e^{0.061 \times t}}{273.15 + t}$$

For EMI conditions, calculation agrees with CIPM 2007 method within a relative value of 2 x 10^{-4} , which is equivalent to a relative difference in *F* of only 30 x 10^{-9}

Air Density – Variation of Atmospheric Pressure

Uncertainty of Force due to air buoyancy, if corrections for pressure, temperature and humidity in the laboratory are not made, is 2.8 x 10⁻⁶

Conclusions

• The measurement of g is not the limiting factor when establishing force, torque and pressure standards using deadweights

- Taking an average value of air density (additional uncertainty of 2.8 x 10⁻⁶) is acceptable for current requirements
- If ever the need arose, corrections for Earth tides could be made to *g*, and corrections made for changes in air density
- These corrections are needed for the highest level of mass metrology, and the measurement of g at the part in 10⁹ level is needed for the redefinition of the kilogram
- For large force and torque machines, the uncertainty will likely be limited by the uncertainty of mass measurement

Variation of Atmospheric Temperature

Variation of Atmospheric Humidity

